Team Hugo Cabret - Clock Project Final Report

From ENGR005_2012
Revision as of 13:45, 16 December 2012 by Cemery1 (Talk | contribs) (Abstract)

Jump to: navigation, search

by Isaac Dulin, Andrew Early, Christine Emery, Abby Norling-Ruggles, and Theo Noomah

Abstract

Our team designed and built a working clock from scratch using Solidworks. The clock, operating on a specially ordered motor, uses a set of gears to help display the seconds, minutes, and hours on the clock face. We designed the gears, face, and hands of the clock on Solidworks, and we printed them using the 3D printer.

Introduction

Clocks are mechanically fascinating devices, and the best way to understand them is to build one by scratch. Our genuine interest in understanding the complexities of this mechanism prompted us to design and construct our own clock. This project was extremely challenging, but our interests in the topic made it especially rewarding. By the end of the project period, we aimed to produce an aesthetically pleasing clock that could accurately, and successfully, operate for daily use.

Background/Theory

The clock motor has only one shaft that completes a full revolution in one minute, and the second hand directly attaches to this shaft. Therefore, in order to operate the minute hand and hour hand, it was necessary to employ 16 gears to reduce the speed of rotation. The minute hand ultimately runs 1/60 of the frequency of the second hand, and the hour hand runs 1/12 of the frequency of the minute hand. To reduce the speed of rotation, we altered the number of teeth on the gears, and consequently the size of the gears. For example, a gear with 2x number of teeth rotates at half the speed of a gear with x number of teeth.

Additionally, the individual gears needed to be designed in a way that they produce the optimal angle and curvature of the teeth. This is extremely necessary to ensure that the gears do not break when pressed together. If a gear has a straight-edged tooth with a point, it will buckle under the pressure of the other gear. Ultimately, the involute gear design, which means each tooth side is an arc segment of a spiral, provided the optimal structure.

Results

Discussion/Conclusion