Multimedia Presentations

From Diversifying Economic Quality: A Wiki for Instructors and Departments

Revision as of 22:45, 19 September 2011 by 130.58.196.151 (talk) ("9 Ways to Reduce Cognitive Load in Multimedia Learning" (Mayer & Moreno, 2003))
Jump to: navigation, search

Many schools encourage the use of technology in the classroom in an attempt to keep it from becoming outdated and boring. More importantly, as the technology at the hands of learners changes, so must the way they learn. A great example of this is the use of multimedia, more specifically presentations tools like powerpoint, in conjunction with lecture. That being said, much research has looked at how to properly employ the use of powerpoint. Here is a list of what the latest research tells us:

alt text

-Be wary of redundancy. Research by Jamet and Le Bohec in 2006 showed a negative effect on several forms of information recall for students presented with powerpoint presentations that directly mirrored the instructor's lecture.

-Concise is better. Research in 2003 by Bartsch and Cohern showed that elaborate powerpoint features such as unrelated images, sounds and extraneous information impaired student learning.

-Draw your own graphs. Research in 2003 by Stern, Aprea and Ebner showed that groups presented with a graph that was ‘actively illustrated’ performed better in recall tasks than groups passively presented with the same graph.

Click here to access Starting Point: Teaching and Learning Economics, a website with additional information on effectively employing multimedia learning in the economics classroom.


"9 Ways to Reduce Cognitive Load in Multimedia Learning" (Mayer & Moreno, 2003)

This paper by Mayer and Moreno addresses the problems inherent of using multimedia when teaching. The author propose a theory of multimedia learning based on 3 assumptions: the dual-channel assumption, the limited-capacity assumption, and the active-processing assumption. The dual-channel assumption asserts that humans process verbal and visual in separate systems. The limited-capacity assumption asserts that a limit exists as to the amount of information each system can process at any given time. The active-processing assumption asserts that meaningful learning represents necessitates higher cognitive processes such as building connections between verbal and visual representations of information. Based on these assumptions, the authors put forth the idea of Cognitive Overload which occurs when a learner's cognitive capacity is exceeded by the amount of cognitive processing desired by the learner. Having identified the problem of Cognitive Overload and the assumptions made, the authors proceed to propose several ways of alleviating it. These ideas/theories are as follows:


Main Tips/Methods to Incorporate in the Economics Classroom:










{{hidden|9. The Spatial Ability Effect| The Spatial Ability Effect has to do with personalizing multimedia presentations for each student. It holds that students with high spatial ability benefit more from simultaneous presentation of narration, sound and images because they have a higher threshold for undergoing cognitive overload. Therefore they should be presented with more elaborate multimedia presentations.

For the original article, click here.

Evidence

Bartsch & Cobern, 2003. "We investigated whether students liked and learned more from PowerPoint presentations than from overhead transparencies. Students were exposed to lectures supported by transparencies and two different types of PowerPoint presentations. At the end of the semester, students preferred PowerPoint presentations but this preference was not found on ratings taken immediately after the lectures. Students performed worse on quizzes when PowerPoint presentations included non-text items such as pictures and sound effects. A second study further examined these findings. In this study participants were shown PowerPoint slides that contained only text, contained text and a relevant picture, and contained text with a picture that was not relevant. Students performed worse on recall and recognition tasks and had greater dislike for slides with pictures that were not relevant. We conclude that PowerPoint can be beneficial, but material that is not pertinent to the presentation can be harmful to students' learning." Click here to see the study.


Jamet & Le Bohec, 2006. "The purpose of this study was to examine the redundancy effects obtained when spoken information was duplicated in writing during the learning of a multimedia document. Documents consisting of diagrams and spoken information on the development of memory models were presented to three groups of students. In the first group, no written text was presented. In the second, written sentences redundant with the spoken information were progressively presented on the screen while in the third group, these written sentences were presented together. The results show that whatever the type of text presentation (sequential or static), the duplication of information in the written mode led to a substantial impairment in subsequent retention and transfer tests as well as in a task in which the memorization of diagrams was evaluated. This last result supports the hypothesis that the visual channel is overloaded as the cognitive theory of multimedia learning suggests." Click here to see the study.

Conclusion

Multimedia should serve as a guide to lecture, not compete with the teacher. This means teachers have to be careful to not only keep student attention, but also make smart multimedia decisions to ensure every minute of lecture is transmitting information to the student in an efficient, engaging way.


Sources

Bartsch, R. "Effectiveness of PowerPoint Presentations in Lectures." Computers & Education 41.1 (2003): 77-86. Print.

Jamet, E., and O. Lebohec. "The Effect of Redundant Text in Multimedia Instruction." Contemporary Educational Psychology 32.4 (2007): 588-98. Print.

Mayer, Richard, and Roxana Moreno. "Nine Ways to Reduce Cognitive Load in Multimedia Learning." Educational Psychologist 38.1 (2003): 43-52. Print.

Stern, E. "Improving Cross-content Transfer in Text Processing by Means of Active Graphical Representation." Learning and Instruction 13.2 (2003): 191-203. Print.